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Abstract. The shear viscosity of QED plasma at finite temperature and density is calculated by solving
Boltzmann equation with variational approach. The result shows the small chemical potential enhances
the viscosity in leading-log order by adding a chemical potential quadratic term to the viscosity for the
pure temperature environment.
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1 Introduction

A novel state of matter, strongly interacting quark–gluon
plasma (sQGP) is claimed to be found at the Relativistic
Heavy Ion Collider at Brookhaven National Laboratory [1].
The measured v2 was found to reach the hydrodynamic
limit of an almost perfect fluid with very small viscosity
at low transverse momentum region. It is desirable to ex-
plain this near-perfect fluid behavior of sQGP from the
theoretical points of view [2].

In principle, there are two approaches to calculate trans-
port coefficients. One is using the Kubo formulae [3] within
thermal field theory. In this frame Jeon first evaluated the
viscosity via resumming an infinite series of ladder dia-
grams in relativistic scalar field [4]. Then the authors of [5]
studied the shear viscosity in weakly coupled hot φ4 theory
using the closed time path formalism (CTP) and another
deriviation in the real-time formalism on a general non-
perturbative expression appeared in [6]. In [7] the shear
viscosity is also computed in the O(N) model in the large
N limit. The alternative framework is the kinetics the-
ory [8–11]. Although the transport equations are hard to
solve, the relaxation time approximation (RTA) and vari-
ational calculus are two popular methods to obtain the
transport coefficients. In RTA, one uses classic kinetic for-
mulae, but involving the relativistic and quantum effects,
to estimate the shear viscosity [12–14]. Arnold, Moore and
Yaffe [9,10] have studied the leading-log contribution aswell
as the full leading order contribution of various transport
coefficients of the QCD-like theory at high temperature
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by solving the Boltzmann equation with a variational ap-
proach. The results in the two frameworks are coincident in
leading-log order except for some factor differences. Some
publications also demonstrated that the diagrammatic ex-
pansion of the Kubo formula was actually equivalent to the
kinetics calculation from the linearized Boltzmann equa-
tion if all the possible ladder diagrams were resummed in
scalar field [4, 15] and in pure gauge QCD theory [16] as
well as including quarks [17]. In addition, one should pay
attention to the consistency of the Ward identity with the
ladder resummation [18] in gauge theory.

However, most works listed above concentrated on the
high temperature but vanishing chemical potential ex-
cept [14]. While actually the net baryon number in the
central fire ball of heavy-ion collision is not zero rigidly
though small [19]. It makes sense to involve this density
effect by introducing a chemical potential µ, which is much
smaller than the temperature, to study how it affects the
shear viscosity of the plasma.

In this paper, we shall try to solve the Boltzmann equa-
tion by the variational method at high temperature with
finite density in QED, following the scheme in [9] for high
temperature and zero chemical potential. QED is a good
toy model for the non-Abelian gauge QCD yet simpler in
computation. We found the shear viscous coefficient is pro-
portional to T 3/e4 ln 1

e and modified by a small factor of
(1 + 0.13µ2/T 2).

The paper is arranged as follows: in Sect. 2wewill review
the sketch of solving Boltzmann equation by variational
method in the kinetics of transport theory and define the
shear viscosity in this framework. The associated collision
processes on the right hand side of Boltzmann equation will
be calculated in Sect. 3. In Sect. 4 we use the variational
method to obtain the shear viscosity. Section 5 gives our
conclusions and an outlook.
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We use the notation P = (p0,p) and p ≡ |p|. The mo-
mentum denoted by a capital letter is the four-component
momentum and the lowercase one with bold face denotes
the three-component momentum.

2 Boltzmann equation and viscosity

Considering a system which slightly deviates from the equi-
librium state by a small velocity gradient, one can describe
it with the one particle distribution f(p′x, t) which satisfies
the Boltzmann equation(

∂

∂t
+ vp · ∂

∂x
+ F · ∂

∂p

)
f(p;x, t) = −C[f ], (1)

where vp = p̂ ≡ p/p and F is the external force. In the
case of shear viscosity, the external field is irrelevant and
the time derivation on the left hand side may be dropped
due to its higher order contribution in spatial gradients [9].
The right hand side of (1) is the collision term which takes
the usual form of

C[f ](p) =
1
2

∫
p′,k,k′

|M(p, k; p′, k′)|2

×(2π)4δ(4)(P + K − P ′ − K ′) (2)

× {f(p)f(k)[1 ± f(p)][1 ± f(k)]

− f(p′)f(k′)[1 ± f(p′)][1 ± f(k′)]} ,

if only 2 → 2 elastic collisions are involved. Here p,k,p′
and k′ denote the momenta of the incoming and outgoing
particles respectively. The momentum space integration

∫
p

is a shorthand for ∫
d3p

(2π)32p0
,

and |M|2 is the two-body scattering amplitude. The 1± f
factor is the final state statistical weight for boson with
the upper sign and for fermion with the down sign.

Following [9], we expand the distribution function in
the near-equilibrium state and obtain the linearized Boltz-
mann equation:

Sij(p) = Cχij(p), (3)

where C is the linearized collision operator. By defining
the inner product in function space and varying the trial
function χij(p), one can obtain the shear viscous coefficient

η =
2
15

Qmax, (4)

where

Qmax =
1
2

(χij , Cχij)|χ=χmax =
1
2

(χij , Sij)|χ=χmax ,(5)

χij(p) = Iij(p̂)χ(p) =

√
3
2

(
p̂ip̂j − 1

3
δij

)
χ(p), (6)

(χij , Sij) = −β2
∑

a

∫
p

p fa
0 (p)[1 ± fa

0 (p)]χa(p), (7)

and in an explicit form the collision term at the right hand
side of the Boltzmann equation is

(χij , Cχij)

=
β2

8

∫
p,k,k,k′

∑
abcd

|Mab
cd|2(2π)4δ(4)(P + K − P ′ − K ′)

×fa
0 (p)f b

0(k)[1 ± fc
0 (p′)][1 ± fd

0 (k′)]

× [χa
ij(p) + χb

ij(k) − χc
ij(p

′) − χd
ij(k

′)
]2

, (8)

where f0 represents for the local equilibrium distribution
function. a, b, c and d are for the species of particles.

In the above definitions, we adopted the formalisms
developed by Arnold, Moore and Yaffe [9] with the only
differences in the distribution functions which involved the
chemical potential in the initial and the final states. An-
other notation one should notice is the sum in front of
the matrix element which means all possible collision pro-
cesses relevant to the leading-log contribution are involved
and properly treated without double counting or multi-
counting.

3 Collision terms

In QED, all possible reactions can be classified in two cat-
egories: processes of exchanging a boson (Fig. 1a) and pro-
cesses of exchanging a fermion (Fig. 1b,c), in which the later
includes the pair production and the Compton scattering
processes. Notice that the s-channel scattering is omitted
because it is infrared finite and thus does not contribute
to the leading-log result.

Before going into the next step of the calculation, we
should specify some important approximations and defini-
tions.
(1) In our discussion, we adopt the hard forward scattering
approximation, namely the momentum transfer q ∼ eT
which is small for all the time since it is sufficient to compute
the leading-log viscosity. So we neglect all the differences
between thedistribution functions such asnf (p) andnf (p′).
In addition, the fermion mass is also omitted in this case,
for it is in order of eT which is much smaller than the hard
scale T . Thus the kinematics of the two-body collision gives

cos θpk = 1 + (1 − cos2 θ)(1 − cos φ), (9)

Fig. 1a–c. The possible processes which contribute to the
leading-log in the collision term in QED plasma. The solid line
is for an electron and the wiggly line is for a photon
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where θpk is the angle between p and k. θ is the angle be-
tween p and q, and the angle between k and q as well, since
they are approximately equal in the forward scattering. φ
is the angle between the p–q plane and the p–q plane.
(2) Due to the energy-momentum conservation, only three
of the four momenta of incoming and outgoing particles
are independent. If we properly label the particles coming
from the same vertex with the similar momentum symbols
as shown in the Fig. 1a, for example P and P ′, all the three
Mandelstam variables can be defined as s = (P + K)2,
t = (P − P ′)2 and u = (P − K ′)2.
(3) As to the infrared divergence, the two categories of
collisions behave in different ways. When the momen-
tum transfer q ≡ |p − p′| goes to zero in the forward
scattering, one finds that the infrared singularity in the
fermion-exchange process is logarithmical while in the
boson-exchange process it is quadratic. Fortunately that is
not so bad for the latter case because if carefully consider-
ing the [χa +χb −χc −χd]2 term one may find that a small
q2 emerges which softens the quadratic divergence into a
logarithmical one. Since now all the collision integrations
are logarithmically divergent, the limit cut-offs play im-
portant roles in our calculation. For transport coefficients
like shear viscosity, these integrations are dominated by the
hard scale T of the system which can be chosen as the ul-
traviolet cut-off. As to the infrared limit, the hard thermal
loop self-energy scale eT is sufficient [9]. Even in the finite
density case, the small chemical potential only modifies the
infrared cut-off by adding a factor like eµ behind eT , which
does not contribute to the leading-log order ln 1/e since we
assume the chemical potential is much smaller than the
typical momentum scale T , i.e. µ ≤ eT � T . Therefore we
will not carefully treat the dq integration and just adopt
T and eT as the upper and down limits respectively.

Now let us continue our calculation. δ3(p+k−p′−k′) in
the integrand of (8) helps to perform the k′ integration, yet
to the δ function of energy conservation, one may introduce
a dummy integration variable ω [8]

δ(p+k−p′ −k′) =
∫ ∞

−∞
dωδ(ω+p−p′)δ(ω−k+k′). (10)

With this trick we can integrate over the angles and the
remaining integrals are

(χij , Cχij)

=
β3

(4π)6

∫ ∞

0
dq

∫ q

−q

dω

∫ ∞

0
dp

∫ ∞

0
dk

∫ 2π

0
dφ

×
∑
abcd

|Mab
cd|2 × fa

0 (p)f b
0(k)[1 ± fc

0 (p)][1 ± fd
0 (k)]

× [χa
ij(p) + χb

ij(k) − χc
ij(p

′) − χd
ij(k

′)
]2

, (11)

with p′ = p + ω and k′ = k − ω. For the sake of con-
venience, we adopt nf (p) as the fermion distribution and
b(p) for the boson function in the equilibrium state in the
following calculation.

3.1 Boson-exchange processes

Unlike the pure temperature case, the system with finite
chemical potential requires a more careful treatment to
distinguish the different species of fermions with different
distribution functions. For the boson-exchange process,
Bhabha scattering e+e− → e+e− and Møller scattering
e−e− → e−e− or e+e+ → e+e+ have been involved. The
s-channel reaction has been omitted since it does not con-
tribute to the leading-log order, and the distribution func-
tions in the Boltzmann equation for both scatterings are

Bhabha scattering :

2n̄f (p)n̄f (k)[1 − n̄f (p)][1 − n̄f (k)]

+2nf (p)nf (k)[1 − nf (p)][1 − nf (k)],

Møller scattering :

4n̄f (p)nf (k)[1 − n̄f (p)][1 − nf (k)], (12)

where the extra factor of 4 in the Møller scattering process
is from the sum over the initial and final states, and the
factor of 2 in the Bhabha scattering comes from the t-
channel and u-channel contributions respectively. n̄f (p) =
[eβ(p+µ) +1]−1 is the distribution function for the positron
and nf (p) = [eβ(p−µ) +1]−1 is the distribution function for
the electron.

In the forward scattering case, one can easily check
s ≈ −u; thus the matrix element for the t-channel is

8e4 s2 + u2

t2
≈ 16e4 u2

t2
= 16e4 4p2k2

q2 (1 − cos φ)2, (13)

where the spins of initial and final states have been summed.
As to the u-channel, the matrix element is identical with
that of the t-channel as long as the momentum symbols
are well defined.

In the case of small q and the particle species a, b being
identical to c, d(or d, c) respectively, one finds

χe
ij(p

′) − χe
ij(p) = q · ∇χe

ij(p) + . . . (14)

≈ ωIij(p̂)χe(p)′ −
√

3
2

(2ωp̂ip̂i − qip̂j − qj p̂i)
χe(p)

p
,

where χe(p)′ = dχe(p)/dp. The square of the above equa-
tion is

[χe(p′) − χe(p′)]2 (15)

= ω2[χe(p)′]2 + 3
q2 − ω2

p2 [χe(p)]2 + O(q3).

Here, the electron and positron have the same departure
from the equilibrium which is denoted by χe. One can prove
that the cross terms like [χe

ij(p
′)−χe

ij(p)]·[χe
ij(k

′)−χe
ij(k)]

vanish when carrying out the dω and dφ integration with
the factor (1 − cos φ)2 coming from the matrix element.

Combining (11)–(13) and completing the dω and dφ
integration, we obtain the collision term for the boson-
exchange process:

(χijCχij)(a)
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=
β3

(2π)3

∫ T

eT

dq

q

∫ ∞

0
dp

∫ ∞

0
dkp2k2

×{p2[χe(p)′]2 + 6[χe(p)]2
}

× {nf (p)nf (k)[1 − nf (p)][1 − nf (k)]

+n̄f (p)n̄f (k)[1 − n̄f (p)][1 − n̄f (k)]

+n̄f (p)nf (k)[1 − n̄f (p)][1 − nf (k)]

+ nf (p)n̄f (k)[1 − nf (p)][1 − n̄f (k)]} , (16)

where we have replaced k with p in the χ-functions and
placed an extra factor of 2 in front of the remaining inte-
gration.

Noticing that the k integration can be done after ex-
panding the distribution functions in terms of µ/T ,∫ ∞

0
dkk2nf (k)[1 − nf (k)]

≈ T 3
[

π2

6
+ ln 4

µ

T
+

µ2

2T 2

]
,

∫ ∞

0
dkk2n̄f (k)[1 − n̄f (k)]

≈ T 3
[

π2

6
− ln 4

µ

T
+

µ2

2T 2

]
,

we obtain

(χij , Cχij)(a)

e4 ln 1
e

≈
(

1 +
3
π2

µ2

T 2

)∫ ∞

0
dp

× {nf (p)[1 − nf (p)] + n̄f (p)[1 − n̄f (p)]}
×{p2[χe(p)′]2 + 6[χe(p)]2

}
. (17)

3.2 Pair production

The pair production process is described by Fig. 1b and
its reversed process. The typical matrix element for this
process is

|Mee
γγ |2 =

u

t
+

t

u
→ 2u

t
= 8e4 2pk

q2 (1 − cos φ). (18)

Adding the distribution functions contributions, (11) is
recast into

(χij , Cχij)(b)

=
16e4

(4π)6

∫∫ ∞

0
dpdqdk

∫ q

−q

dω

∫ 2π

0
dφ(1 − cos φ)

2pk

q2

×[χa
ij(p) + χb

ij(k) − χc
ij(p

′) − χd
ij(k

′)]2

× {nf (p)n̄f (k)[1 + b(p)][1 + b(k)]

+n̄f (p)nf (k)[1 + b(p)][1 + b(k)]

+b(p)b(k)[1 − n̄f (p)][1 − nf (k)]

+ b(p)b(k)[1 − nf (p)][1 − n̄f (k)]} . (19)

Expanding the χ-function term and ignoring the momenta
difference between the incoming and outgoing particles
we get

[χe
ij(p) + χe

ij(k) − χγ
ij(p

′) − χγ
ij(k

′)]2

≈ I2
ij(p̂)[χe(p) − χγ(p)]2

+I2
ij(k̂)[χe(k) − χγ(k)]2 (20)

+2Iij(p̂) · Iij(k̂)[χe(p) − χγ(p)][χe(k) − χγ(k)].

Noticing that I2
ij(p̂) = 1 and

Iij(p̂) · Iij(k̂) =
1
2

(3 cos2 θpk − 1) = P2(cos θpk), (21)

where P2(cos θpk) is the second Legendre polynomial, one
can check that the cross term vanishes when integrating
over dφ. We carry out the k integration by expanding the
integrand in terms of small µ/T and find∫ ∞

0
dkkn̄f (k)[1 + b(k)]

≈ T 2
[

π2

8
− 0.963

µ

T
+ 0.298

µ2

T 2

]
,

∫ ∞

0
dkknf (k)[1 + b(k)]

≈ T 2
[

π2

8
+ 0.963

µ

T
+ 0.298

µ2

T 2

]
,

∫ ∞

0
dkkb(k)[1 − nf (k)]

≈ T 2
[

π2

8
− 0.270

µ

T
− 0.048

µ2

T 2

]
,

∫ ∞

0
dkkb(k)[1 − n̄f (k)]

≈ T 2
[

π2

8
+ 0.270

µ

T
− 0.048

µ2

T 2

]
. (22)

Then (19) becomes

(χij , Cχij)(b)

=
βe4 ln 1

e

24π5

∫ ∞

0
dpp[χe(p) − χγ(p)]2 (23)

×
{

nf (p)[1 + b(p)]
(

π2

8
− 0.963

µ

T
+ 0.298

µ2

T 2

)

+n̄f (p)[1 + b(p)]
(

π2

8
+ 0.963

µ

T
+ 0.298

µ2

T 2

)

+b(p)[1 − n̄f (p)]
(

π2

8
− 0.27

µ

T
− 0.048

µ2

T 2

)

+ b(p)[1 − nf (p)]
(

π2

8
+ 0.27

µ

T
− 0.048

µ2

T 2

)}
.
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3.3 Compton scattering

The Compton scattering process involves both electron
and position contributions. The matrix element for this
process is

|Meγ
eγ |2 = −8e4 s

u
= 8e4 2pk

q2 (1 − cos φ). (24)

The distribution functions for this process is

nf (p)b(k)[1 − nf (k)][1 + b(p)]

+n̄f (p)b(k)[1 − n̄f (k)][1 + b(p)]. (25)

The χ-function terms becomes[
χe

ij(p) + χγ
ij(k) − χe

ij(k) − χγ
ij(p)

]2
−→ [χe(p) − χγ(p)]2 + [χe(k) − χγ(k)]2 . (26)

After finishing the integration over dk we can recast
(11) into

(χij , Cχij)(c) (27)

=
βe4 ln 1

e

23π5

∫ ∞

0
dpp

[
χe

ij(p) − χγ
ij(p)

]2
×
{

nf (p)[1 + b(p)]
(

π2

8
− 0.270

µ

T
− 0.048

µ2

T 2

)

+ n̄f (p)[1 + b(p)]
(

π2

8
− 0.270

µ

T
− 0.048

µ2

T 2

)}
.

4 Variational method

As far as shear viscosity is concerned, two species of par-
ticles are involved and χ(p) must take two components:

χ(p) =
(

χe(p)
χγ(p)

)
. (28)

Accordingly the collision operator C is a 2× 2 matrix. The
left hand side of the Boltzmann equation, (7), reads

(χij , Sij)

= −β2

π2

∫ ∞

0
dpp3 {b(p)[1 + b(p)]χγ(p)

+nf (p)[1 − nf (p)]χe(p)

+ n̄f (p)[1 − n̄f (p)]χe(p)} . (29)

Since we have already obtained all the collision terms
in the Boltzmann equation, we are going to solve

(χij , Sij) = (χij , Cχij) (30)

to get the shear viscosity by varying the ansatz χij to
reach its maximum value. We are not going to argue much
about the accuracy of this method in this paper, because

Arnold et al. [9] have compared it with the exact results at
high temperature but zero chemical potential environment.
And we will see that the ansatz in the pure temperature
environment is a function only in terms of the momentum
and the thermal variables; thereby we can safely use the
same ansatz form for small µ.

Before we choose the exact ansatz of χγ and χe, we
prefer to demonstrate the scheme of this variational calcu-
lus. For simplicity all the subscripts and the momentum
dependences of each function and operator are dropped,
and the Boltzmann equation becomes

(χ, S) = (χ, Cχ). (31)

Expanding the χ-function in a finite basis set,

χ =
N∑

m=1

amφm = a · φ, (32)

one finds that (31) becomes∑
m

am(φm, S) =
∑
mn

aman(φm, Cφn). (33)

Redefining S and C in the φm basis set, one finds∑
m

amS̃m =
∑
mn

amC̃an, (34)

with S̃ ≡ (φm, S) and C̃ = (φm, Cφn). It is a trivial exercise
to give a = C̃−1S̃ and

η =
2
15

Qmax =
1
15

a · S̃ =
1
15

S̃�C̃−1S̃. (35)

For the real two-component χ-function one can expand
it in the same finite basis set,

χγ(p) =
N∑

m=1

amφm(p), χe(p) =
N∑

m=1

aN+mφm(p), (36)

where {a1, a2, . . . , a2N} are the independent variational
parameters, and we adopt the one function of the set with
the natural ansatz φ(p) = p2,

χ(p) =
(

a1φ(p)
a2φ(p)

)
=
(

a1

a2

)
p2. (37)

By using this form of ansatz and neglecting the higher
orders than µ2/T 2, one can evaluate

S̃ = −β2

π2

∫ ∞

0
dpp5

×
(

b(p)[1 + b(p)]
nf (p)[1 − nf (p)] + n̄f (p)[1 − n̄f (p)]

)

= − 120ξ(5)T 4

π2

(
1

15
8

(
1 + 0.869 µ2

T 2

)) (38)
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by expanding the fermion distribution function in terms of
µ/T and neglecting the higher orders of µ2/T 2.

The collision term C̃ can be obtained likewise by com-
bining (17), (23) and (27):

C̃ =
πT 5e4 ln e−1

9

[(
0 0
0 7

4

(
1 + 0.738 µ2

T 2

))

+
9π2

128

(
1 + 0.443

µ2

T 2

)(
1 −1

−1 1

)]
. (39)

Inserting (38) and (39) into (35) we obtain the shear
viscous coefficient for the QED plasma:

ηQED = 187.13
T 3

e4 ln e−1

(
1 + 0.13

µ2

T 2 + O
(

µ4

T 4

))
,

(40)
which recovers the result of [9] at µ = 0 and has a structure
similar to that from the relaxation time approximation [14,
20].

5 Discussion and outlook

So far we have obtained the shear viscosity of the QED
plasma at finite temperature and density in the leading-
log order. The chemical potential modifies the result in
the pure temperature case by an additional term which is
proportional to µ2T , which ensures that the modification
factor is irrelevant to the sign of the net charge of the
plasma due to the symmetry. In addition, the sign in front
of the modification factor is positive, which indicates that
the chemical potential increases the shear viscosity of the
plasma. Although we obtain this result in the small µ limit,
the tendency keeps unchanged in the whole region of µ < T .

In thermal field theory, we can also obtain such a kind
of result as (40) by replacing the damping rate by the
transport damping rate [21] in the boson-exchange case.
The reason for this replacement is clear when one looks into
the kinetic theory: the extra q2 coming from the χ-function
in ee → ee scattering softens the quadratic divergence into
a logarithmical one. This extra small q2 appeared only
in the boson-exchange process and is the origin of the
extra sin2 θ

2 in the transport damping rate. Carrington,
Defu and Kobes also pointed out [5], that these χ terms
can be explained as an infinite series of resummed ladder
diagrams. These facts imply that the one-loop calculation
with the usual interaction rate is not complete even in the
amplitude of order. But the replacement of the transport
interaction rate improves the calculation and makes the
results reliable.

In a weakly coupled system the fermion thermal mass is
of order eT , which ismuch smaller than thehardmomentum
scale T and thus can be neglected. Even when we assume
that the chemical potential is in the same order of eT , it is
still reasonable to omit the mass term in the distribution
functions for the reason that if one expands the terms on
the exponential of the distribution function in terms of the

small fermion mass,

β(
√

p2 + m2 ± µ) ≈ β

(
p +

m2

2p
± µ

)
, (41)

it is easy to check that the second term is of order e2T .
However, the mass effect is quite interesting when one con-
sider the heavy fermion in heavy-ion physics. For example,
Aarts and Resco [22] have evaluated the shear viscosity and
electric conductivity in gauge theory with massive fermions
in the large Nf expansion and found both coefficients to
go to zero for large mass.

We have calculated the viscosity of the plasma involv-
ing only 2 → 2 processes to leading logarithm. But the
inelastic scatterings and interference effects might be im-
portant if we go beyond the leading-log and obtain the
complete leading order contribution. Furthermore, to ex-
plain the near-perfect property of QGP, one needs to treat
the strong coupling system. In this case we have to use
the Kubo formula and calculate the correlation functions
of the relevant currents.
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